4-(1/x)-(2/(x^2))=0

Simple and best practice solution for 4-(1/x)-(2/(x^2))=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4-(1/x)-(2/(x^2))=0 equation:


D( x )

x = 0

x^2 = 0

x = 0

x = 0

x^2 = 0

x^2 = 0

1*x^2 = 0 // : 1

x^2 = 0

x = 0

x in (-oo:0) U (0:+oo)

4-(1/x)-(2/(x^2)) = 0

4-x^-1-2*x^-2 = 0

t_1 = x^-1

4-2*t_1^2-1*t_1^1 = 0

4-2*t_1^2-t_1 = 0

DELTA = (-1)^2-(-2*4*4)

DELTA = 33

DELTA > 0

t_1 = (33^(1/2)+1)/(-2*2) or t_1 = (1-33^(1/2))/(-2*2)

t_1 = (33^(1/2)+1)/(-4) or t_1 = (1-33^(1/2))/(-4)

t_1 = (33^(1/2)+1)/(-4)

x^-1-((33^(1/2)+1)/(-4)) = 0

1*x^-1 = (33^(1/2)+1)/(-4) // : 1

x^-1 = (33^(1/2)+1)/(-4)

-1 < 0

1/(x^1) = (33^(1/2)+1)/(-4) // * x^1

1 = ((33^(1/2)+1)/(-4))*x^1 // : (33^(1/2)+1)/(-4)

-4*(33^(1/2)+1)^-1 = x^1

x = -4*(33^(1/2)+1)^-1

t_1 = (1-33^(1/2))/(-4)

x^-1-((1-33^(1/2))/(-4)) = 0

1*x^-1 = (1-33^(1/2))/(-4) // : 1

x^-1 = (1-33^(1/2))/(-4)

-1 < 0

1/(x^1) = (1-33^(1/2))/(-4) // * x^1

1 = ((1-33^(1/2))/(-4))*x^1 // : (1-33^(1/2))/(-4)

-4*(1-33^(1/2))^-1 = x^1

x = -4*(1-33^(1/2))^-1

x in { -4*(33^(1/2)+1)^-1, -4*(1-33^(1/2))^-1 }

See similar equations:

| -3.3y=21.7 | | (3/4x^2)-(1/4x)-(1/2)=0 | | 12(2w-5)=4(6w+10) | | 20+8*0.5/20-x=12 | | 33-2x=6x+5 | | 7x+28=7x-14 | | -2x+6=-18+x | | 5(x+6)=40 | | (3x+40)+(2x-10)=180 | | -8y^2+4y-14=0 | | 6x-48+4x+9=180 | | 11a=0.088 | | 6E-3=25.2 | | y^4-33y^2+256=0 | | 6x-9+3x+24=180 | | 1/8=y/5 | | y^2+256/y^2=32 | | 2(4x-6y)= | | 9x-8=90 | | 14-2n=-6 | | 7x+9+9x-8=180 | | -3/8x=11 | | x^2+1/x^2-2=0 | | 10x-2+3x-3=180 | | 3x+9+3x-3=180 | | 3x+2y- 4z= -7 | | -18.473=1.3(8-m) | | 10x-2+3x+9=180 | | 3x+ 2y-4z=-7 | | 2x+4/2x^2+8x+8 | | 3x+2y-4z =-7 | | 3x + 2y - 4z = -7 |

Equations solver categories